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Abstract. Quantization of classical dynamical systems with a Poisson structure on
homogeneous &hler manifolds is considered. The quantization follows the method invented

by Berezin and represents the unitary transition operatot-ax@) as a quasiclassical path
integral in the coherent-state basis. In case the coherent-state manifold appears as a (degenerate)
rank-one co-adjoint orbit of the symmetry group, an explicit representation of the transition
amplitude in terms of classical data can be derived for large values of the highest weight, which
corresponds to the quasiclassical approximation. This representation is further shown to perfectly
agree, in contrast to some earlier approaches, with the known exact results and may provide
non-trivial asymptotics of physical relevance.

1. Introduction

A G-homogeneous classical phase space can be thought of as a(Miple; G), where

M stands for an even-dimensional smooth manifold on which a non-degenerate closed
2-form w is defined. Action of a Lie grougr on M is assumed transitive (connects any
two points of M) and symplectic (leaves invariant). Put another way; acts as a group

of canonical transformations oM, w). In fact, any homogeneous symplectic manifold that
admits a connected semisimple group of isometfieis locally homeomorphic to a certain
co-adjoint orbit of G. In view of this, an appropriate quantization of co-adjoint orbits of
Lie (super)groups seems to provide an adequate basis to treat associated quantum systems.
Quantization of co-adjoint orbits maps under certain conditions a clasGieémentary
system(M, w; G) into a quantum counterpaft (M), U(G)), where a Hilbert spacg/ (M)

is constructed out of sections of a complex line bundle aMerand U(G) stands for a
unitary irreducible representation 6f in H(M). This approach is known as the Kirillov—
Kostant geometric quantization [1]. In the case whirés a homogeneousabler manifold

a general theory of quantization was developed by Berezin [2, 3] in terms of the operator-
symbol correspondence and explicitly elaborated for compact Lie groups by Bar-Moshe and
Marinov [4]. Path-integral quantization on coherent-state manifolds essentially amounts to
Berezin's approach, provided the coherent states form an overcomplete ba&sisvin

which is the case whenevdVi (G) appears as a unitary irreducible square integrable
representation ofz. It then follows that the corresponding coherent-state manifidld

can be viewed as a compldsahler phase space whose metric can be obtained from a
single real-valued function oM, a Kahler potentialF'. It is important that due to Berezin

[2] and Onofri [5] the Kahler potential can be written down explicitly in terms of coherent
states. As a result, the path integral can be entirely determined by dhieKpotential

(to be more accurate by its analytic continuation) and a classical Hamiltonian (covariant
symbol of H).
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The purpose of the present paper is to derive a closed representation of the coherent-
state path-integral propagator for large values of the dominant weight of the representation
(H(M), U(G)). A conventional configuration space path integral could hardly be used for
this purpose, since certain constraints are to be additionally imposed to fix a representation,
which usually results in a severe technical problem. Our consideration holds for a real
semisimple Lie groupG possessing square integrable representations. As is known, both
compact and non-compact groups with discrete series representations fall into this category;
the results we obtained are also equally well applied to the widely used Heisenberg—Weyl
coherent states parametrized by points of a complex plane

The plan of the paper is as follows. In section 2, we explain the notation and survey
essentials of the coherent-state path-integral representation of a transition amplitude between
two generalized coherent states. Section 3 includes some preliminaries and a brief account of
earlier results on the quasiclassical evaluation of quantum-mechanical propagators. Section 4
constitutes the main result, a closed quasiclassical formula for the coherent-state propagator.
Relations between various quantization schemes are discussed in section 5. A few examples
are gathered in section 6 to illustrate the advantages of this method over some earlier
approaches. A summary concludes the paper in section 7.

2. Coherent-state path integral

As is known, Perelomov’s coherent states for a semisimple gé@pe points of an orbit

of a unitary irreducible representation 6fin an abstract Hilbert spade [6]. By choosing

an initial state|0) in H, called the fiducial state, the vectors of the correspondingrbit

are parametrized by points of a homogeneous space G/ G, whereGy is the isotropy
subgroup of|0). In the following we will be interested in the case whe@g appears as

a dominant weight vector (highest weight vector up to the Weyl transformation), which
corresponds to the quantization in théfder (holomorphic) polarization. It then follows
that a factor spac& /Gy appears as adhler manifold, the hler potential being directly
expressible in terms of the coherent states as follows. Given a coherenj:stateere z
belongs toG/Go, we define (locally)

(z1lz2)
(2110)(Olz2)
which can be viewed as an analytic continuation of the real-valued function

F(Z,z) = log|{0|z)| 2. (2)

The latter is called the &hler potential and was introduced in this way by Berezin [2] and
Onofri [5]. This function incorporates geometry of the underlying phase space and plays a
crucial role in the following.

The phase spacg/ Gy can be equipped with an invariant supersymplectic 2-farm

w = —i88§F(Z, 7) 3

wheres = dz ® 8/9z and$ = dz ® 9/dz such that the exterior derivative= § + 5. A
straightforward calculation shows thatis closed, i.e. @ = 0, which means that /Gy is

a symplectic manifold. In other words, it may serve as a classical phase space. In terms of
F, the metric andz-invariant Liouville measure read

dszzgdZdZ:asz(z’Z)dde (4)

4

F(z1,z2) =log 1)

_ _ dzdz
dmLmzN%Fm@EH— (5)
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where the normalization constant is chosen such that

/Iz)(zldu=1- (6)

Resolution of unity (6) enters into a path integral as a basic ingredient.
Consider the quantum propagator in theepresentation

(zp|T eXp{ - ;l:/o H(S)dS}Im =P(Zr,21,;7) (7

which represents Berezin's covariant symbol of the evolution operator, the Hamilto-
nian H (s) being a polynomial function of thé generators with time-dependent coefficients.
In equation (7)T denotes the time-ordering symbol, which is necessary since for different
values ofs the corresponding Hamiltonians do not commute.

In order to express the transition amplitude by a path integral, we divide the time interval
into N small intervals:e = t/N with N — oo. Let us define

sy = €k 2k = z(Sk) O0<k<N.

With the aid of the time discretization together with relation (6) the propagator can be
written up to first order ire in the form

Fv=ip N-1 — N
P = lim / l_[ dur(zrlzn—1){zalzr) 1_[ (Zklzk—1) exp{ - iGZHd(Zk:Zkl)} 8
z k=1

N=00 Joo=zy  jo1 k=2

where

H _
HO G, g5 = SO g gz,
(zklzr—1)
The variablegy andzp do not enter path integral (8) and the corresponding Euler-Lagrange
equations are accompanied by the boundary conditigrs z; andzy = zr, respectively.

The term

(zrlzn—1){(z1lz1)

gives rise to the continuum boundary term to be discussed below.

Before proceeding further, a few remarks on representation (8) apply. First, one should
note that no ‘operator ordering problem’ appears here [7,8]. As is seen from equation (8),
the order has explicitly been fixed by the quantization in terms of covariant symbols.

Second, it is important to indicate definitely the class of trajectories the path integral
is localized on. For instance, rearranging the kinetic term in (8) enables one to change
the class of trajectories that support the path integral [8,9]. An actual choice is, however,
dictated by a specific problem to be solved. For our purposes, it is sufficient to consider
path integral (8) to be localized on a space of square integrable paths (some details are
given at the end of section 4).

Third, as is known a compact phase space cannot be covered by a single chart. On the
other hand, every integral in equation (8) is written in the same local chart. The way out is
that the phase spad¢ is G-homogeneous (the group acts onM through biholomorphic
isometries), so that a full set of local charts is generated by actiols @y two charts
are locally related by — gz, for someg € G. Since each local chart covek$ except for
a set of measure zero (with respect 0)done may, by employing an appropriate covering
and adjusted5-shifts of variables, restrict the integration to the single local chafrt

In the continuum limit equation (8) takes on the form

2(v)=zF
P = / Du(z) expd. 9)
z2(0)=z;
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The total action® includes the boundary terin:

O=S+4T
where
_ L T(E EY [ e
S = 2/0 (Zaz ZBZ>dS }_1/0 H"(z,z)ds (10)
1
= E[F(ZFs 2(7)) + F(z(0), z;) — F(Zp, 2r) — F (1, 21)). (11)

These equations coincide up to an obvious change in the notation with those of [10].

The continuum representation (11) originates from a specific discontinuity of p@aths
andz(s) at the relevant endpoints. For example, let us introdgé&) = z; — zx_1. For
any trajectoryz(s) one has lim.oAx(e) = 0 for all k, except that lim_,oAyx(e) # O,
sincezy = zp Wherezy is an arbitrary complex number. Consequently, the corresponding
classical trajectory(s) does not joint the endpoint valug = z(t). However, instead of
explicitly writing out corresponding shifts of the arguments, it is more convenient to consider
variablesz(s) andz(s) to be independent. Formally, this amounts to saying that the initial
|z;) and final(zr| configurations are in different polarizations [11], which necessitates the
appearance of the boundary term. For example, consider a classical system specified by the
Hamiltonian function:® with initial and final configurations being taken in the polarizations
generated by/dg andd/dp, respectively:

. 9h%4q. p) B
q9=—" q(t) =qr
P
8hC| ,
— _$ () = py. (12)
q

These equations follow from the Hamilton principle of stationary acti¢ér= 0, where

6 =i [ pi~11ds ~ipilar - a(O).
0
Classical equations of motion follow from the Hamilton principte = 0, which yields
z=in"Y32F) "9, HY (1) =7p
¢ =—ih (82 F)9:H® 2(0) = z;. (13)
One sees from (13) that the equations of motion are correctly specified by the boundary
conditions and define a canonical phase flow associated Mfith
In view of a rather complicated form of the coherent-state path integral, it would be
desirable to obtain simple sufficient criteria for the stationary-phase approximation to be
exact. These are provided by the path-integral generalization of the Duistermaat—Heckman
(DH) theorem which, loosely speaking, states that the Wentzel-Kramers—Brillouin (WKB)

approximation is exact, provided the Hamiltonian flow leaves a metric of the underlying
phase space invariant [12], that is
Lx,8=0 (14)

where Ly, stands for a Lie derivative along a Hamiltonian vector field that generates the
flow.

To formally apply the DH theorem, a kinetic term in an action is required to be of the
form i /6, where the symplectic 1-forri determinesw by & = w. This is pursued for
the representation (9)—(11) as follows. Let us define

0 = S[6F (G2 = 8F(er.2) —SF (2.0 +5F (G 2], (15)
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By the very construction,dd= w. We recall that d= 6 + 6§ and§? = 6> = 86 + 86 = 0. A
straightforward computation yields

. i [T 1 _ _
S+F=If9—}:l/ HCIdS—E[F(ZF,ZF)-FF(ZI,ZI)—ZF(ZF,ZI)]
0

Ei/Q—I:/ HCIdS+|Og(ZF,|ZI)
h Jo

which results in the desired representation,
T exp[—(i/R) [ H(s)d 20)=r P
(zFl pl—(i/h) [, H(s)ds]|z;) :/ D,u(z)exp[i/G—;:l/ Hc'ds]
z 0

(zrlzi) ©)=z

To avoid possible confusion, we conclude this section with the following remark. The
path-integral quantization depicted above provides an example of the so-called quantization-
versus-classical-limit procedures. This approach involveleguantizatiorvia a classical
coherent-state limit as a necessary preliminary step. In other words, we start with the
guantum HamiltonianH, evaluate its classical (Poisson) limit through the associated
coherent states and then quantize the obtained classical S§E#nG /Gy, w) by using the
path integral onG/Gy, the point being that we start with abstractrepresentation o
and end up with thexplicitone to be realized in a Hilbert space of the holomorphic sections
over the corresponding co-adjoint orbit. To be aware that the coherent states provide us
with a true classical limit, one may note th&t being semisimple, can be realized by a
Poisson action or/; in other words, there is a homomorphic map of the Lie algebra of
G into the (Poisson) Lie algebra of the corresponding classical observables [11]. Hence,
the classical limit exists and, as was shown by Onofri [5], can be evaluated through the
coherent-state expectation values.

3. Quasiclassical approximation: preliminaries

Quantization of a group action on an orbit implies that the dominant (highest) weight of the
corresponding representation now plays the role of the Planck coristém Targe values
of the dominant weight corresponding to the classical limit. For a spin system with total
spin j, quasiclassics occurs for large whereas in the case 6U (1, 1) the classical limit
corresponds to large values of the occupation numbers [6]. In this regard, a quasiclassical
guantization by the coherent-state path integral may provide some non-trivial asymptotics
of physical relevance.

Let G be a compact simple Lie group. For any unitary irreducible representatias),
its highest weight is given by a sum of the fundamental weight¢ with non-negative
integer coefficients

l = lewj
j=1
wherer stands for the rank of a Lie algebra 6f It can then be shown that [13]
F'=>%"1L;F (16)
j=1

where{F/} represent the fundamentabkler potentials The same dependence brholds
for the covariant symbols (coherent-state expectation values) of the basic elements of the Lie

t For non-compact groups this holds for discrete representations [14].
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algebra ofG [4]. In the following, for the sake of simplicity, we will be solely concerned
with the case when only a single term in the series contributes to (16), which corresponds
to group orbits of rank= 1. Given a group representati@f (G), the number of non-zero
nodesl; # 0 in the corresponding Dynkin graph may be called thek of M [4]. If
all I; > 0 the corresponding orbit is called non-degenerate. To put this another way, the
stability algebra (the algebra dfo), being reductive, splits naturally as a direct sum into its
centre and semisimple ideal, the dimension of the centre being equal to the rank of an orbit.
This is nothing but the number afhite roots in the respectivpainted Dynkin diagram
[15], with black roots corresponding to the semisimple part of the stability algebra.

The requirement of rank= 1 by no means restricts one to the grou@s= SU(2)
and SU(1, 1) and corresponding homogeneous spag&%2)/U (1) and SU(1,1)/U (D),
for there exist one-rank degenerate orbits of higher-rank groups with complex dimensions
dim.M > 1. For instance, consider the(5) algebra. Painting its Dynkin graph in all
possible ways results in the observation that there exist two rankbriB) homogeneous
manifolds, namelyM; = SUB)/U (L)@ SU4) andM, = SUGB)/UL) @ SU(2) ® SU(I)
with real dimensions equal to 8 and 12, respectively.

In physics the symplectic formv has the same units as an angular momentum

[w] = [kg m* 1] = [A].

Since we assume the coordinateandz to be dimensionless, the form in equation (3)
is implicitly understood to be measured in unitskof It is convenient to introduce a new
parameter

A =hl

that represents a physical quantity, whereaspresents the quantum mechanical yard stick
with which to measure. [16]. For instance, in the cas®/ = S°,1 € N) A represents
the intrinsic angular momentum (spin). It is the parametdhat enters into measurable
physical quantities, for example energy. In order to keep them fixed in thellimitoo,
one should simultaneously imply that— 0f. This explains why the large highest weight
corresponds to a quasiclassical region.

As was already mentioned, the Lie algebra of classical observables may be represented
by covariant symbols or momentum maps which are functiongZonvith the Lie product
being the Poisson brackets given by thahler structure. In the limit — oo (@ — 0)
the algebra of operators (quantal observables) corresponding to the Lie generagdrs of
reduces to the Poisson algebra of functions (momentum mapaj.ofo put this another
way, in the classical limit, orbits in the co-adjoint representationsGoémerge, where
different representations give rise to different orbits. A method to obtain classical phase
spaces (group orbits) faF = SO(3) has been worked out by Lieb [17] and generalized to
compact simple groups by Simon [18].

Let {L,} denote a set of generators Gf Consider the Hamiltonian

dimG dimG » (2
H=Y "ol Ly+ Y hof¢sOLals+ - (17)
a=1 a,f=1

whereod, wfﬁ) ... are some frequencies that may explicitly depend on time and functions

(f;(l),... are chosen to ensure tha® linearly depends om. In view of the

1 The limit A — 0 means a passage from systems of units well adjusted for describing quantum objects to those
which are more suitable for classical objects.
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aforementioned property of momentum maps, this automatically holds for the first.term
From equation (16) it then follows that all dependencel as isolated in a single factor
of (/) multiplying the total action®, which justifies the application of the stationary phase
approximation to the path-integral propagator (9).

To conclude this section, we make a few remarks about already known quasiclassical
formulae for quantum-mechanical propagators. The main result in this respect is due
to DeWitt and leads to the short-time (and quasiclassical) approximation to a transition
amplitude in a Riemannian configuration space [19], which in the flat case goes over to
the well known van Vleck—Morette formula. Further references can be found in [20], see
also [21].

An inconvenient point is, however, that there is no simple sufficient criteria for this
guasiclassical expression to be exact. Since the configuration space path integral in contrast
to that for the phase space does not involve any Liouville measure (in a time-lattice
discretization), the DH theorem cannot be applied in this case. Yet some ‘experimental’
observation can be made. As has been noted by Schulman [22] and DeWitt [23], the
configuration space path integral is WKB exact if the expression fdirite time propagator
coincides with that for theshorttime one. As was shown by Dowker [24], the finite time
propagator takes on the same form as the short time one for a free point moving in a space
diffeomorphic to the group space of a compact simple group, the explicit formulae being,
however, given only for theSU (N) group. For further development of these ideas the
recent papers by Inomat al [25] and Junker [26] could be referred to. It is interesting
to note that the first construction of the Green function for the general compact Lie group
was elaborated by Eskin [27].

When using a short time propagator in the iterative procedure for the path integral one
should bear in mind that non-minimal geodesics may exist, indicating that the underlying
topology is non-trivial, for example, for a point &§t. Consequently, different homotopic
sets of classical trajectories must be summed up, otherwise important information about
global geometrical properties of the propagators may be lost. In this regard, correct path-
integral representations for propagators on compact Lie groups and spheres have been
elaborated explicitly by Marinov and Terentyev in a comprehensive paper [20] in agreement
with the Laidlaw—DeWitt—Schulman theorem that establishes a path integral in multiply
connected spaces [28].

The coherent-state, path-integral formalism turns out to be more convenient since
a powerful machinery of canonical transformations can be employed and a hidden
supersymmetry of an action can be revealed, which leads to the path-integral generalization
of the DH theorem that providasniversalsimple criteria (14) for the quasiclassics to be
exact [12]. Moreover, this method incorporates the underlying symmetry of the problem
under consideration, which makes it possible to look for an asymptotic behaviour with
respect to the representation indices (eigenvalues of the Casimir operators).

It was Klauder [29], as well as Klauder and Daubechies [30], who first suggested the
use of a system of type (13) to derive the semiclassical approximation for the coherent-state
path integral. An attempt at the direct evaluation of the Heisenberg—Weyl, coherent-state
propagator in the quasiclassical domain was made by Weissman [31]. In the important work

T Numerous spin-spin lattice interactions fall into this category. A simple example of the furgforis
provided by

~

1
12 ‘12 HC|N2<=[ @ i 1/2
2]._1(++ ) j ¢ 2 -1 >l

whereJ stands for theSU (2) generators withJ2 = j(j + 1).
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by Yaffe [32] a general method for finding classical limits in certain quantum theories was
developed. This approach is naturally based upon coherent states associated with a symmetry
group and is used to explicitly construct a classical phase space, a corresponding co-adjoint
orbit. None of the symmetry groups considered in this paper are semisimple, which makes it
necessary to distinguish between adjoint and co-adjoint orbits. Cadavid and Nakashima [33]
studied the coherent-state path integral for semisimple Lie algebras, coherent states being
sections of a holomorphic line bundle ovér/Go. The semiclassical approximation of

the quantum evolution operator via coherent states associated with quantized closed curves
on the SU (2) orbits was obtained by Karasev and Kozlov [34]. This method was further
extended to semisimple Lie algebras [35] and gene&dil& phase spaces [36].

4. Quasiclassical approximation: coherent-state propagator

In this section we present a derivation of the quasiclassical coherent-state propatfator
by applying the stationary-phase approximation to the path integral (9).
We are looking for the representation

P =€)+ oD)] | > o0 (18)

where (---) stands for/-independent functions on a phase space. The quasiclassical
propagator is then defined by the leading term of (18)

poC — (.., (19)
We first rewrite (9) to explicitly take into account the normalization:
J Du(z) expd
= - ®g = P|y—o. 20
P <ZF|Zl>fDM(Z) expdy 0 |H=0 (20)

In order to lift the measure weight factﬁsz in an exponential we make use of a trick

that consists of the integration over auxiliary anticommuting fiélds and£(r) (see, e.g.,
[12]):

) [ Dz Dz D& D& exp[® + [ &(s)(32 F)&(s) ds]
| Dz Dz D& D& exp[do + [ £(s) (32 F)&(s) ds]

The quasiclassical — oo) motion is described by the approximation

P = (zrlzs (21)

_ 1 1
\I’E®+/§(3221F)$ds=\I/|C+§52\IJ|C+...:\IJ|C+§52\I;|C SW|. =0 (22)

and
_ 1
Vo= Pg + / E(B2F)E ds = W, + E5Z‘Po|c dWol. =0 (23)

with the boundary conditions(0) = z; andz(r) = zr. The subscripté’ denotes a value
along the extremals (13).
To proceed further, we introduce variations

Sz=n=2—2 0Z=n=27—2Z2¢
which satisfy

n0 =0 n(r) =0.
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It is clear thaté|. = &|. = 0 and in view of (1) exm@o|. = (zr|z;). Bearing this in mind
we insert expansions (22) and (23) into equation (21), perform integralségvand 5
coming from§2¥ and %W, that cancel each othernd finally arrive at

’ch(zﬂ 215 T) = Pred €XPP, (24)

where the reduced propagator is given by
_ 1/7 . . i fF _ _
Pred = / Dy Djj eXp{E/ (11 — 1) ds — 5/ m°A+7°C + ZrmB)dS}
0 0

_ ([ Detk —1/2 (25)
~ \ DetKy

K- ( .—iA(s) —iB.(s) + B_Y) and Ko = ( 0 83> .
—IB(s) — 0, —IC(s) -9, O

The functions

A=R[@ZF) 0. Hlle €=k 19:[0%F) 9:H]l
1 _ 1 _

B = =0:{(02 F) " 0:H]le + 0L F) ~0- H]e
are calculated with the aid of the Euler—Lagrange equations (13). We recal} toad 7
are considered to be independent.

Our aim now is to express (25) in terms of the classical orbitals. This can be achieved in

a straightforward manner by directly generalizing the derivation ofS#i€2) quasiclassical
propagator [37] to the case of an arbitrary one-raréhlér potential. The result reads

PCGr 2 T) = ex (CD +1/TBds)[ 1 0. T/z
IR T =OR\ Pt | [6Go(0), 208 Ge(0), 2o (OD] 2 0202, |
(26)

The quasiclassical propagator is thus expressed in terms of the total classical action and
classical orbitals and is similar to the DeWitt result for the short time propagator of a
particle in a curved configuration space.

There are some important distinctions, however. First, the total adiiés involved
rather thanS. The boundary term turns out to be of crucial importance in deriving the correct
guasiclassical coherent-state propagator. Were it ignored, the so-called overspecification
problem [29] and contradictions with the DH theorem would appear. This was just the case
in some earlier attempts to derive the quasiclassita(2) propagator [38], whereas the
correct expression has recently been obtained [37].

Next, there appears a dependence on Berm. The latter plays the role of
normalization and is necessary to fix the quantization (by covariant symbols). This term
interpolates between the covariant and contravariant quantization schemes and disappears
at the point corresponding to the Weyl quantization. With the aid of the Euler-Lagrange
equations it can also be represented in terms of the extremals:

with

i . i
B = 5(3:2 = 8:0)|c = 5=(3:X; — 8:Xz)
where Xy = X.d, + X:9: is the Hamiltonian vector fieldix,w + dH® = 0.

t The non-trivial measure [ contributes tagP at higher orders.



4482 E A Kochetov

As has already been mentioned, the total actibrand the Kahler potentialF are
proportional tol, whereas it is seen thadt ~ I°, which agrees with suggestion (19).

Generalization of the above result to the multidimensional case (provided one-rank orbits
are still considered!) is straightforward. For instance, consider the compact degenerate
U(N) orbit, with complex projective spac€ PN~! = SU(N)/SU(N — 1) @ U(1). The
complex dimensionality of the manifold /¢ — 1 whereas its rank= 1. The resulting khler
potential

N—-1
F =llog [1+ Zzizi]
1

where{z’,i = 1,..., N — 1} is a complex vector and a positive intedeis the highest
weight specifying a representation. An example is provided by a quantum system with
dynamicalU(N) symmetry, for example, generated by a set of biIinedzf;, [a;, a}] =
8j,i,j =1,..., N, with the quasiclassical parameter being the total number of the field
excitations:/ = ), n;.

An obvious modification of equation (26) consists of extending (20) and (21) to include
vector indices and reads

a i [T 1 320, \1Y?
pac — ®.+ - | trBd - _ d ——
eXp( 2/0 ' S)[[g(zcm,zc(r»g(zc(O),zc(O))]l/’-’ e'(az;az;ﬂ

(27)

whereg(z, z) = detd?  F. As for a possible extension of (27) to higher-rank manifolds
(say, maximal orbits with all; # 0), one may note that a corresponding path-integral
representation, being a straightforward generalization of (9), is available, for example, for a
partition function [9] as well as for a transition amplitude [10]. In point of fact, however, the
subsequent application of the stationary-phase approximation necessarily implig||that
must tend to infinity. Technically, differeit may run to infinity at different rates, including

the case when all the components except for a single one are kept constant. Consequently,
the straightforward generalization of the above approach to a general case seems to pose a
problem.

We conclude this section by the following remark. It may seem that the final result (26)
is crucially based on the fact of whether a path integral (9) exists as a bonafide integral.
The common belief is, however, that (9) cannot be in general justified as an integral with
respect to a certain measure. Moreover, even the justification of the existence of the limit
in (8) is rather a non-trivial problem [8], although in the semiclassical donflair o)
this limit under certain restrictions does exist, provided expansion in powerg/as first
carried out [32]. However, this procedure does not in general lead to a genuine integral
with respect toa pathmeasure.

Frequently, the statement occurs (see, e.g., [39]) that once the continuum expression
(9) is concerned, only formal calculations are possible. This in turn implies that the
continuum form of the path integral may at most provide some hint about an actual
answer which nevertheless is to be obtained in a rigorous manner within the time-lattice
approximation. In general, this assertion is true, although some exceptions, for example,
the quasiclassical approximation considered above, are possible. The justification of the
continuum representation in the quasiclassical doriaiy 1) may be given in two formally
distinct but in essence similar ways. One may observe, for instance, that a scalar product
(zr|zx—1) entering into equation (8) is highly peaked abayt¢) = z; —zx_1 ~ 0 asl tends
to infinity. This implies that, once the leading tefRf¢ is concerned, only terms linear in
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Ay are to be left in (8), which under some additional mild restrictions on the Hamiltonian
function would eventually lead to the continuum representation (25), corrections to the
leading term coming, in particular, from higher powers/Af [32].

We prefer, however, to start from the formal continuum representation (9) which makes
sense for continuous differentiable paths. Path integral (9) is localized on a Hilbert space of
the square integrable paths, z) < oo [8], so that in general (and actually, almost surely)
z(s) has no time derivative. To find a way out, we represent an arbitrary path in the form
7 = zq(s) + 8z(s) and expandz(s) in a series over an appropriate basis ingp The trick
due to Berezin consists of retaining only a finite part of the series, thereby dealing with
continuous and differentiable paths at all intermediate steps, with the infinite limit being
taken only at the final stage. This procedure converges for the Gaussian path integral (25)
[8], thereby justifying the above continuous calculus. This is, however, the case, provided
we are concerned as before with a calculation of the leading tEffn,

5. Other quantization schemes

So far we have been concerned with a specific quantization scheme, the quantization
by covariant symbols. The next important quantization scheme to be mentioned here is
contravariant quantization. The covariant symi#gt®’ which we identify with ¢ is
related to the contravariant o by [2]

H*(Z,2) = /exp{qﬁ(i,zw, VIHY (D, v) du (@, v) = (THE, 2)  (28)

where

#(z, zlv,v) = F(v,v) + F(Z,v) — F(z,2) — F(v, v). (29)
Note that from the resolution of unity (6) it follows that

/e_F(ﬁ’”) du(v,v) = 1. (30)

If the point (z, z) is fixed, the potentials-¢(z, z|v, v) and F (v, v) generate the very same
metric and are to be related by a group transformagion

F(g:v, g:v) = —¢(z, z|v, v). (31)
Invariance of the measureudupon g, along with the normalization (30) results in
1COV — lctr

as it should be.

In principle, the operatof’, being permutable with a group action, can be expressed
via the corresponding Casimir operators. In the case under consideration only the second
Casimir operator

K= A= (02F) 192 (32)
the Laplace—Beltrami operator with respect to the metric (4), is involved.
As is known, in the flat case
T(A) =e* (33)
whereas for the quantization on a sphere and Lobachevsky @e@; has been evaluated
in a form of infinite products [3].

As is seen from equation (26), both the expression in the brackets ang-teem
are of the order of?2(1), whereasd, = O(). This means thaH is to be taken with
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accuracy up to the order aP(1). Therefore, for our purposes we need an asymptotic
relation between symbols rather than the exact one, which is not easily available. As a
consequence one may note the following. Being non-positive, the fungtimaches zero

at the point(v, v) = (z, z). As! goes to infinity, the maximum becomes sharper, localizing

¢ at (v,v) = (z,z). Then expanding the integrand in (28) in powersno& v — z and

n =v—Zz, 0one gets

HCOV(Z, Z) — \/e*ﬁ’I[Iile(z7 Z) + AHCU(E, Z)ﬁn]% + 0(1)
=[1+A+01/I1®H"?Z, 2)  — oo. (34)

In view of this, one may convert equation (26) into a form suitable for the quantization by
contravariant symbols.

To conclude this section, we will specify equation (26) for the flaf = C) case
relevant for the Heisenberg—\Weyl coherent states. To avoid confusion with dimensions, we
introduce, following [16], coordinates = ¢ /@ andy = p/8 and the complex dimensionless
coordinatez = 1/+/2(x + iy). Constantsx and A are of dimensions of position and
momentum, respectively. It is convenient to introduce the dimensionless constant

y =ap/h

which plays the role of the representation indéx The classical limit becomes quite
transparent in this notation. It means a passage from systems of units to meandg,
which are quite adequate for a quantum description, to those that are more convenient for
the classical one. For instance, if one chooses a ‘classical scatel m, 8 = 1 kg m s?,
theny—1 ~ 1074, which effectively corresponds to small Tt is just in this sense that one
should understand the limit — 0.

The conventional 2-formw = dp A dg goes over to

w=—afdx Ady
so that
w/h =iy dz Adz.

We introduce a set of-dependent Heisenberg—\Weyl coherent states:

lz;7) = eXp( - %Zz + ﬁzaT> [0) (35)
hence
F =log|(0lz; y)| 72 = yzz. (36)
In the flat case covariant symbols are related to those indtkgpiantization’ scheme by
HGZ,2) = (T(MDH®)Z, ) T () =€  «el0.1]

the covariant, contravariant and Weyl quantization schemes being specifiee-tty 1 and
1/2, respectively. As a result one gets

HCV _ %AHCOVE HCV _ [(% —a) —i—a]AHCOV: H(a) _ (% —Ol)AHCOV—i— O(l/lz)

1 In fact, y # 0 can be thought of as a number that specifies co-adjoint orbits of the Heisenberg—Weyl group
which are two-dimensional planes.
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which yields
(1 920, M2 i [T
@ c
== expl o, + = Bd
Phiat |5 97,92, p + 2/0 S}

(1 920, Y2 (1 4

=== expl] @@ +i( = —« / Bds (37)
|y 0zF0z; | 2 0
(1 92 M2 /1 4

~ | ——= exp] @@ +i( = —« / B@ ds (38)
| ¥ 0ZF0z; | 2 0

where equivalence classes are definedfby ¢ = {f|f/g = 1+ o(1),] — oo}, so that
H® ~ H® = {9 All quantities in the above that carry theindex (e.g.,B®) are to be
calculated by the substitutiod — H®.

This result (the first line in equation (37)), with tleterm, however, being missed, was
derived by Weissman [40] by extending Miller's semiclassical algebra to the coherent-state
setting. Originally, Miller's formalism incorporated eigenstates of Hermitian operators to
relate a quantum mechanical matrix element of a general unitary transformation, in the
semiclassical limit, to a generator of a corresponding canonical transformation [41].

It is to be noted that in deriving equations (37) and (38) the original equations of motion
(13) that correspond to the covariant quantization have been kept fixed. That is why (38)
cannot be regarded as a genuineepresentation. To derive the latter, one would have to
start with equatiors®@#® = 0, whose solutions in contrast to (13) would bear an explicit
I-dependence, namely® = z¢ + O(1/1). In that case, however, it would be natural to
start with, instead of equation (7), tkesymbol of the evolution operator.

6. Test examples

In this section, the continuum representation (9) in the semiclassical approximation (26)
is shown to directly recover, in contrast to some earlier attempts (see, e.g., [29, 38]), the
known exact results, which seems to be a necessary requirement to be met. It is the fact that
earlier approaches had certain inconsistencies and failed to recover the exact answers which
resulted eventually in the conclusion that the coherent-state path integral does not yield
the correct semiclassical results due to intrinsic inevitable ambiguities [42] and, hence, the
WKB approximation is not allowed in the case of a matrix element under the coherent-state
representation [43]. As we will see shortly, the above statements seem to be somewhat hasty.

6.1. Path integral for the Heisenberg—\Weyl coherent states

In view of equation (36), the general representation (9) reduces to [8, 44]

Py, = {zF, V| exp—i/ Hds|z7, y)
0
2(v)=zF Yy [T . T
= / DzDZexp{—/ (zZ—Zz’)ds—i/ HYZ, z)ds
2=z 2 Jo 0
+§[zpz(r> +2(0)z; — lzrl* — |zI|2]} (39)
with the normalizatiorP, (zr, z1; T)|lg=0 = (zF, V|21, V).

1 In a subsequent paper [31] the author, to recover the correct result, was forced to take into accButetrthe
in a specific case of the parametric amplifier.
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For a harmonic oscillatori(= 1) H = wa'a, one obtainsH® = H@=9 = yw|z|? and
H® = HY — qw, and solutions to (13) read
z.(s) = z7 exp(—iws) Zc(s) = Zrexp(—iw(t — )) (40)
which in turn results in
O = yZpz; exp—iwr) — g(|zF|2 P +itew  B=o.
Equation (37) can be applied to yield
P, = expd*=?

as it should be.
It also follows from the resolution of unity in terms of (35), that
eirw/Z

2isin(tw/2)

_ dzd * i
tre it — y / ﬂ’P(Z, zZ) = y/ dx exp[—yx(l - E*Iwr)] =
27i 0

which is a correct answer (cf [43]).

For Gaussian actions the path integral (39) reduces to equation (37). However, in the
case when the Hamiltonian cannot be cast into a linear combination of the oscillator group
generatorsi'a, ! anda, the quasiclassical propagator (37) does not merely reduce to the
simple form

expo..
For instance, for the Hamiltonian of a parametric amplifier

H=waa— %[a'fz g 2ot + a2 e2ia)t]

one getsy = 1)

izrp — zs Sinhgt

z.(s) expliws) = sinhgs + z; coshgs

coshgt
) Z izy sinh o
Z.(s) explio(r — 5)) = LR SIMET o ces — iz, sinhgs
coshgt
_M+ltanh (72 +Z2)_1'(|Z |2_‘_|Z |2) B=ow
" coshgr @ 2 §Tier i) TS lkE ! o
Equation (37) is again exact and reads
P(Zr, 215 7) = (coshgr) ™" expd,

which coincides with the direct time-lattice calculations [45].

6.2. SU(2) path integral
The coherent state for the unitary irreducible representation afth@) group is given by
Iz j) = L+ 1257 expzd )l =) (41)

wherez € SU(2)/S(Uy x Uy) =~ C P, which can be thought of as an extended complex
planeM = CP! = C'. The operatorg, and Jy span theSU (2) algebra

[Jo, Ji] = :t-]i [J+, J_] = 2.]0
and the lowest weight statg; —j) is annihilated by/_. From equation (2) it follows that
F(z,2) = 2jlog(1+ zz) l=2jeN
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where j must be a half-integer corresponding to the unitary irreducible representations of
SU(2). From the geometric viewpoint, this requirement is to be imposed in order that a
holomorphic prequantum line bundle oM@P?! can be constructed. The general equation (9)
reads f = 1)

Ho=ir (1+2r2(0)/ 1+ 2(0)zp)’

P-(Z,z;r)=/ Du(z) . .
s o, PO AT AT )

[T E®)26) —2W) [T )
Xexp<J./o 11 20026) ds I/(; H(z(s), z(s)) ds (42)

with the normalizatiorP; | y—o = (zr; jlzs; j). Here Du;(z) stands for the infinite pointwise
product of theSU (2) invariant measures

A, = 2j+1 dzd:z
! 271 (14 [z3)?%
As a simple example that directly demonstrates the usefulness of equation (26) consider
a system governed by the Hamiltonian [37]

H =2AM0J. + f(t)J. + f()J_.

The stationary-phase equations read
iz =24z + ft) — f(1)Z? 2(0) = z; (43)
—iz =247+ f(t) — f(1)Z? 2(1) = Zr. (44)

Being of Riccati type, these equations cannot be solved explicitly, but yet some information
is available. Solutions to equations (43) and (44) represenfth@) phase flows starting
from the endpointg; andzr. This enables one to determine explicitly their dependence on
the initial data, which in turn furnishes the necessary information for (26) to be applied [37]:

@, = 2jlogla(r) — b(t)z; + b(1)zr +a(m)Zrzi] — jlogd + 1zr DA+ |z/1%)

) sy d —b(n)z +a()
B = (2A — fz— fZ)lc - Idl —c(t)zr +d(t)

P, 2j
9Zrdz;  [a(r) — b(t)zr + b(1)ZF + a(t)Zrz/]?
where

a=—iAa+ifb a(0) =1

b=—iAb—ifa b(0) = 0. (45)
Inserting this into (26) yields
Pi(ZF, 215 T) = expd,. (46)

which coincides with direct time-lattice calculations (cf [38]). This result agrees with the
DH theorem. Moreover, the dynamical invariance, i.e. the factthaelongs to thesU (2)
algebra, results in

Pred =1

which is of importance in deriving the generalized Bohr—-Sommerfeld quantization
conditions [37].
With equation (46) at hand, the partition function

Z; =/dﬂj7’j(2,z; T)
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can be easily computed to yield
Ziap=a(t) +a(r) Zia=a(®)?+a(@®?+la(®)® —|b(0)
Solutions to equations (45) (all parameters being time-independent) read

a(t) = cosQot — 1co2| f|u) SinQot b(t) = —% sin(2| f |u) sinQot
where

Qo=VAZ+[f2  cou2flu) = Qio
In particular,

Zi—12 = 2 cosQpT Ziy =1+ 2c0g22071)

which is a correct result. In a similar fashion the discrete series representati§bg hfl)
may be considered, with the#ler potential now being” = 2klog(1l — |z|?), |z] < 1,
1<2keN.

As a simple though non-elementary example, we finally consider an asymptotic
behaviour of the matrix element

A
P = (7] exp(z—jJZ2>|z) A>0, 2j> 1. (47)

From equation (41) and th&U(2) commutation relations it follows that

2j
. . A
22 2j1.12n 2
P=>A+ 1z E_ Clz| exp(—zj n—j) )

n=0

A+ zH7% eWZ/OO dr e‘tziczﬂ | exp( A 2/\t )
= z — 2|z —n— [—tn
—00 \/E =0 J
00 2j
=1+ eWZ/ ie"2<1+|z|2exp<—)\— %t>>
N J

=1+ |z % i i—’/w dr exp(—2; £ (1)) (48)
where

f(t) = 1> —log(1 + |z|? exp(—A — 2v/A1)).
The saddle-point expansion can be further applied to equation (48) to yield

1. , , 1+|zlze_“‘°>]( 1 )
P =exp| — ZArjki + rjko + 2jl0 1
p[ Shiko + Ajko + 2] g( 1122 (1+(/\/2)(k§—1))1/2+0()
2j = o0 (49)
with kg being the saddle point
1—[z]2e
=~ - 50
°T1¥ |z|2 @ *ko (50)

On the other hand, to apply in this case the basic equation (26), we write dowh for
the SU (2) path-integral representation (42) with

i (1— 22\ |22 .
“’[2<1+|z|2> T AT 2P T (1)
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andzr = 7, z; = z. The equations of motion then read

o1z , _

z—lwzl+|z|2(1—1/(2])) z2(0) =z

P jwris |Z|2(1 — 1)) i) ==z (52)
1+z)2

It can be easily checked th#|?> appears as a constant of motion, which enables one to
integrate (52):

2(1) =z (1) = €90 (53)
whereQ is to be determined by the relation

Q 1—|z]2e ™ 1

—=k=—""—(1-—. 54

) 1+|Z|Ze—kk 2] ( )

Expanding further both sides of equation (54) in the inverse powerg gie2ds
k=ko+ki/(2j)+---

where
1—[z]2e
ko= ————— 55
07 14 |z)Ze o 53)
which coincides with equation (50) and
A
ki = <§(1 —k3) — 1)k0‘1. (56)

Now that we have explicitly determined classical solutions, the basic ingredients entering
into (26) can easily be obtained. In the first place, with the help of equations (53), (55) and
(56) one gets

A ) ) 1+ |z|2e ko M1 —k3) .
O, = —= jk2 4+ Ajko + 2j lo “ +01
5Jko + Aiko+2) g( 11122 t—p a/n
i [T Mo A1 —kD) _
- Bdt = — - ———=— +01/)). 57
5/ -t oay)) 7
A few laborious calculations can be carried out to obtain
92D,
aZFBZl ZF=Z,21=2

The point is that when calculatingko/9z = K:, dko/dz = K, and 3%ko/3z0z = K. one
has to bear in mind tha, implicitly depends on the endpoints through equation (55). After
some algebra one, however, finds that

22 e*)\ko ZZ e*)\ko
T 1+ [zReth T 14 [zReh
2k, g ko A
K, = 0 a=-(1- kg).

(=P At [z )2 2
The first line of equation (57) along with the derivatives obtained lead to

9%d, 2j
=—AjKz(ko—1) — AjK.K: — ————
J Kz (ko ) JR Rz (1 + ko)2

[Kz:(1+ ko) — K. K:] + O(1)

aZFazl IF=Z,21=2

_ 2j et L 3) 1-13)
B (1—a>2<1+|z|2e*ko)Z[((Hko)z_z =k
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A1 — ko) 1 2ko
_< 2 1+k0>1—a
2j e *ko
T A—a) 1A+ z2e )2
Inserting equations (57) and (58) into equation (26) immediately results in (49).

} +0@Q)

+ 0. (58)

7. Conclusion

In the present paper, we have discussed quasiclassical quantization of classical mechanics on
a symplectic group orbit of rank 1 in terms of the relevant coherent-state path integral,
which provides an appropriate expansion of a quantum-mechanical propagator for large
values of the highest weight that specifies the underlying group representation. The
principal result is a new explicit quasiclassical formula for a propagator on a coherent-state
manifold, which is written entirely in terms of classical data and reveals the leadingl/large
behaviour of the propagator. This representation is important since a wealth of physically
relevant classical phase spaces admit a natuaales polarization, for examplé? ~ C P*,
the classical phase space for a spin,Sé* ~ D', a unit disk on a complex plane—a
natural phase space for models of quantum optics [25]. In this regard, the quasiclassical
representation (26) can be applied to the study of, for example, spin tunnelling in the
semiclassical limit [46] and related problems [47] as well as to the behaviour of highly
excited field states in quantum optical models.

As for possible generalizations of (26), it would be of practical importance to modify
it to include non-local actions that arise provided certain degrees of freedom in an original
Hamiltonian can be integrated out. This is the case for a large class of interactions that
involve bilinear combinations of Lie algebra generators and field coordinates. An example
is provided by the spin-radiation/atom-radiation interaction:

H=wl,+oaa+ %(L_a + J_ah [a,all =1
J

N

where we have for the sake of notational simplicity put equal the frequencies of the field
and spin oscillations. Consider
P=(altr e ™) Plu=o=1

Having integrated out the field degrees of freedom, one is left with an effective action whose
non-local part looks like

o [T ZOGE —9)z(s) X, mlt=s) 2
2 2/ < drd G(t—s)= —_— = —Hn.

)y AFEOPAT R C=9=2 foie ="

n=—00

Equation (26) cannot be directly applied in this case unless a few simplifications are
carried out. For instance, in the local limit that holds, roughly speaking, as oo one
has

G(t —s) > Lé(t —5)
w
so that one arrives at th&lU (2) path-integral representation (42) with
N Sl |zI?
RN 1+ 2P
The equations of motion then read

;= —iQz 2(0) =z 7=1Qz (1) =12

cl

2j(g%/w)
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where
) 1— |Z|2 e*)\.k

Q _ 2 2 .
ZZk:l_aW o =(g/a)) A =lowrt.
The solution to the above equations is quite transparent
1—|z2e*
k=1—a?"—"—"_ +0O@* 250.
* 1+ |z12e* +0@) * =

Proceeding further as above one, finally obtains
P = expd.(1+ o(1)) 2j > 1, 0% < 1, 2ja? fixed
where
1+ z1%2e*  r2ja?|z)?e?
1+ 212 (1+1z12e )
It would also be interesting to extend this approach to the supersetting, since even the
simplest super phase spaces happen to be relevant to important physics. For instance, the
one-rank degenerate orbit of ti$#/(2|1) supergroup can be viewed as a phase space of

ther — J model of strongly correlated electrons which is believed to adequately describe a
high-T. superconducting state.

d. = jr+2jlog
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