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Abstract. Quantization of classical dynamical systems with a Poisson structure on
homogeneous K̈ahler manifolds is considered. The quantization follows the method invented
by Berezin and represents the unitary transition operator exp(−iτH) as a quasiclassical path
integral in the coherent-state basis. In case the coherent-state manifold appears as a (degenerate)
rank-one co-adjoint orbit of the symmetry group, an explicit representation of the transition
amplitude in terms of classical data can be derived for large values of the highest weight, which
corresponds to the quasiclassical approximation. This representation is further shown to perfectly
agree, in contrast to some earlier approaches, with the known exact results and may provide
non-trivial asymptotics of physical relevance.

1. Introduction

A G-homogeneous classical phase space can be thought of as a triple(M,w;G), where
M stands for an even-dimensional smooth manifold on which a non-degenerate closed
2-form w is defined. Action of a Lie groupG on M is assumed transitive (connects any
two points ofM) and symplectic (leavesw invariant). Put another way,G acts as a group
of canonical transformations of(M,w). In fact, any homogeneous symplectic manifold that
admits a connected semisimple group of isometriesG is locally homeomorphic to a certain
co-adjoint orbit ofG. In view of this, an appropriate quantization of co-adjoint orbits of
Lie (super)groups seems to provide an adequate basis to treat associated quantum systems.
Quantization of co-adjoint orbits maps under certain conditions a classicalG-elementary
system(M,w;G) into a quantum counterpart(H(M),U(G)), where a Hilbert spaceH(M)
is constructed out of sections of a complex line bundle overM andU(G) stands for a
unitary irreducible representation ofG in H(M). This approach is known as the Kirillov–
Kostant geometric quantization [1]. In the case whereM is a homogeneous K̈ahler manifold
a general theory of quantization was developed by Berezin [2, 3] in terms of the operator-
symbol correspondence and explicitly elaborated for compact Lie groups by Bar-Moshe and
Marinov [4]. Path-integral quantization on coherent-state manifolds essentially amounts to
Berezin’s approach, provided the coherent states form an overcomplete basis inH(M),
which is the case wheneverU(G) appears as a unitary irreducible square integrable
representation ofG. It then follows that the corresponding coherent-state manifoldM

can be viewed as a complexKähler phase space whose metric can be obtained from a
single real-valued function onM, a Kähler potentialF . It is important that due to Berezin
[2] and Onofri [5] the K̈ahler potential can be written down explicitly in terms of coherent
states. As a result, the path integral can be entirely determined by the Kähler potential
(to be more accurate by its analytic continuation) and a classical Hamiltonian (covariant
symbol ofH ).
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The purpose of the present paper is to derive a closed representation of the coherent-
state path-integral propagator for large values of the dominant weight of the representation
(H(M),U(G)). A conventional configuration space path integral could hardly be used for
this purpose, since certain constraints are to be additionally imposed to fix a representation,
which usually results in a severe technical problem. Our consideration holds for a real
semisimple Lie groupG possessing square integrable representations. As is known, both
compact and non-compact groups with discrete series representations fall into this category;
the results we obtained are also equally well applied to the widely used Heisenberg–Weyl
coherent states parametrized by points of a complex planeC.

The plan of the paper is as follows. In section 2, we explain the notation and survey
essentials of the coherent-state path-integral representation of a transition amplitude between
two generalized coherent states. Section 3 includes some preliminaries and a brief account of
earlier results on the quasiclassical evaluation of quantum-mechanical propagators. Section 4
constitutes the main result, a closed quasiclassical formula for the coherent-state propagator.
Relations between various quantization schemes are discussed in section 5. A few examples
are gathered in section 6 to illustrate the advantages of this method over some earlier
approaches. A summary concludes the paper in section 7.

2. Coherent-state path integral

As is known, Perelomov’s coherent states for a semisimple groupG are points of an orbit
of a unitary irreducible representation ofG in an abstract Hilbert spaceH [6]. By choosing
an initial state|0〉 in H, called the fiducial state, the vectors of the correspondingG orbit
are parametrized by points of a homogeneous spaceM = G/G0, whereG0 is the isotropy
subgroup of|0〉. In the following we will be interested in the case where|0〉 appears as
a dominant weight vector (highest weight vector up to the Weyl transformation), which
corresponds to the quantization in the Kähler (holomorphic) polarization. It then follows
that a factor spaceG/G0 appears as a K̈ahler manifold, the K̈ahler potential being directly
expressible in terms of the coherent states as follows. Given a coherent state|z〉 wherez
belongs toG/G0, we define (locally)

F(z̄1, z2) = log
〈z1|z2〉
〈z1|0〉〈0|z2〉 (1)

which can be viewed as an analytic continuation of the real-valued function

F(z̄, z) = log |〈0|z〉|−2. (2)

The latter is called the K̈ahler potential and was introduced in this way by Berezin [2] and
Onofri [5]. This function incorporates geometry of the underlying phase space and plays a
crucial role in the following.

The phase spaceG/G0 can be equipped with an invariant supersymplectic 2-formw,

w ≡ −iδδ̄F (z̄, z) (3)

whereδ = dz ⊗ ∂/∂z and δ̄ = dz̄ ⊗ ∂/∂z̄ such that the exterior derivative d≡ δ + δ̄. A
straightforward calculation shows thatw is closed, i.e. dw = 0, which means thatG/G0 is
a symplectic manifold. In other words, it may serve as a classical phase space. In terms of
F , the metric andG-invariant Liouville measure read

ds2 = g dz dz̄ = ∂2
z̄zF (z̄, z)dz dz̄ (4)

dµ(z̄, z) = N∂2
z̄zF (z̄, z)

dz dz̄

2π i
(5)
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where the normalization constant is chosen such that∫
|z〉〈z| dµ = I . (6)

Resolution of unity (6) enters into a path integral as a basic ingredient.
Consider the quantum propagator in thez-representation

〈zF |T exp

{
− i

h̄

∫ τ

0
H(s) ds

}
|zI 〉 ≡ P(z̄F , zI , ; τ) (7)

which represents Berezin’s covariant symbol of the evolution operator, the Hamilto-
nianH(s) being a polynomial function of theG generators with time-dependent coefficients.
In equation (7)T denotes the time-ordering symbol, which is necessary since for different
values ofs the corresponding Hamiltonians do not commute.

In order to express the transition amplitude by a path integral, we divide the time interval
into N small intervals:ε = τ/N with N →∞. Let us define

sk = εk zk = z(sk) 06 k 6 N.
With the aid of the time discretization together with relation (6) the propagator can be
written up to first order inε in the form

P = lim
N→∞

∫ z̄N=z̄F

z0=zI

N−1∏
k=1

dµk〈zF |zN−1〉〈z1|zI 〉
N−1∏
k=2

〈zk|zk−1〉 exp

{
− iε

N∑
k=1

H cl(z̄k, zk−1)

}
(8)

where

H cl(z̄k, zk−1; sk) = 〈zk|H(sk)|zk−1〉
〈zk|zk−1〉 dµk = dµ(z̄k, zk).

The variableszN andz̄0 do not enter path integral (8) and the corresponding Euler–Lagrange
equations are accompanied by the boundary conditionsz0 = zI and z̄N = z̄F , respectively.
The term

〈zF |zN−1〉〈z1|zI 〉
gives rise to the continuum boundary term to be discussed below.

Before proceeding further, a few remarks on representation (8) apply. First, one should
note that no ‘operator ordering problem’ appears here [7, 8]. As is seen from equation (8),
the order has explicitly been fixed by the quantization in terms of covariant symbols.

Second, it is important to indicate definitely the class of trajectories the path integral
is localized on. For instance, rearranging the kinetic term in (8) enables one to change
the class of trajectories that support the path integral [8, 9]. An actual choice is, however,
dictated by a specific problem to be solved. For our purposes, it is sufficient to consider
path integral (8) to be localized on a space of square integrable paths (some details are
given at the end of section 4).

Third, as is known a compact phase space cannot be covered by a single chart. On the
other hand, every integral in equation (8) is written in the same local chart. The way out is
that the phase spaceM is G-homogeneous (the groupG acts onM through biholomorphic
isometries), so that a full set of local charts is generated by actions ofG: any two charts
are locally related byz→ gz, for someg ∈ G. Since each local chart coversM except for
a set of measure zero (with respect to dµ), one may, by employing an appropriate covering
and adjustedG-shifts of variables, restrict the integration to the single local chart∼=C.

In the continuum limit equation (8) takes on the form

P =
∫ z̄(τ )=z̄F

z(0)=zI
Dµ(z)exp8. (9)



4476 E A Kochetov

The total action8 includes the boundary term0:

8 = S + 0
where

S = −1

2

∫ τ

0

(
ż
∂F

∂z
− ˙̄z∂F

∂z̄

)
ds − i

h̄

∫ τ

0
H cl(z̄, z)ds (10)

0 = 1

2
[F(z̄F , z(τ ))+ F(z̄(0), zI )− F(z̄F , zF )− F(z̄I , zI )]. (11)

These equations coincide up to an obvious change in the notation with those of [10].
The continuum representation (11) originates from a specific discontinuity of pathsz(s)

and z̄(s) at the relevant endpoints. For example, let us introduce1k(ε) ≡ zk − zk−1. For
any trajectoryz(s) one has limε→01k(ε) = 0 for all k, except that limε→01N(ε) 6= 0,
sincezN = zF wherezF is an arbitrary complex number. Consequently, the corresponding
classical trajectoryzcl(s) does not joint the endpoint valuezF = z(τ ). However, instead of
explicitly writing out corresponding shifts of the arguments, it is more convenient to consider
variablesz̄(s) andz(s) to be independent. Formally, this amounts to saying that the initial
|zI 〉 and final〈zF | configurations are in different polarizations [11], which necessitates the
appearance of the boundary term. For example, consider a classical system specified by the
Hamiltonian functionhcl with initial and final configurations being taken in the polarizations
generated by∂/∂q and∂/∂p, respectively:

q̇ = ∂hcl(q, p)

∂p
q(τ) = qF

ṗ = −∂h
cl(q, p)

∂q
p(0) = pI . (12)

These equations follow from the Hamilton principle of stationary actionδφ = 0, where

φ = i
∫ τ

0
[pq̇ − hcl] ds − ipI [qF − q(0)].

Classical equations of motion follow from the Hamilton principleδ8 = 0, which yields
˙̄z = ih̄−1(∂2

z̄zF )
−1∂zH

cl z̄(τ ) = z̄F
ż = −ih̄−1(∂2

z̄zF )
−1∂z̄H

cl z(0) = zI . (13)

One sees from (13) that the equations of motion are correctly specified by the boundary
conditions and define a canonical phase flow associated withH cl.

In view of a rather complicated form of the coherent-state path integral, it would be
desirable to obtain simple sufficient criteria for the stationary-phase approximation to be
exact. These are provided by the path-integral generalization of the Duistermaat–Heckman
(DH) theorem which, loosely speaking, states that the Wentzel–Kramers–Brillouin (WKB)
approximation is exact, provided the Hamiltonian flow leaves a metric of the underlying
phase space invariant [12], that is

LXH g = 0 (14)

whereLXH stands for a Lie derivative along a Hamiltonian vector field that generates the
flow.

To formally apply the DH theorem, a kinetic term in an action is required to be of the
form i

∫
θ , where the symplectic 1-formθ determinesw by dθ = w. This is pursued for

the representation (9)–(11) as follows. Let us define

θ = i

2
[δF (z̄, z)− δF (z̄F , z)− δ̄F (z̄, z)+ δ̄F (z̄, zI )]. (15)
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By the very construction, dθ = w. We recall that d= δ + δ̄ andδ2 = δ̄2 = δδ̄ + δ̄δ = 0. A
straightforward computation yields

S + 0 = i
∫
θ − i

h̄

∫ τ

0
H cl ds − 1

2
[F(z̄F , zF )+ F(z̄I , zI )− 2F(z̄F , zI )]

≡ i
∫
θ − i

h̄

∫ τ

0
H cl ds + log〈zF , |zI 〉

which results in the desired representation,

〈zF |T exp[−(i/h̄) ∫ τ0 H(s) ds]|zI 〉
〈zF |zI 〉 =

∫ z̄(τ )=z̄F

z(0)=zI
Dµ(z)exp

[
i
∫
θ − i

h̄

∫ τ

0
H cl ds

]
.

To avoid possible confusion, we conclude this section with the following remark. The
path-integral quantization depicted above provides an example of the so-called quantization-
versus-classical-limit procedures. This approach involves adequantizationvia a classical
coherent-state limit as a necessary preliminary step. In other words, we start with the
quantum HamiltonianH , evaluate its classical (Poisson) limit through the associated
coherent states and then quantize the obtained classical system(H cl,G/G0, w) by using the
path integral onG/G0, the point being that we start with anabstractrepresentation ofH
and end up with theexplicit one to be realized in a Hilbert space of the holomorphic sections
over the corresponding co-adjoint orbit. To be aware that the coherent states provide us
with a true classical limit, one may note thatG, being semisimple, can be realized by a
Poisson action onM; in other words, there is a homomorphic map of the Lie algebra of
G into the (Poisson) Lie algebra of the corresponding classical observables [11]. Hence,
the classical limit exists and, as was shown by Onofri [5], can be evaluated through the
coherent-state expectation values.

3. Quasiclassical approximation: preliminaries

Quantization of a group action on an orbit implies that the dominant (highest) weight of the
corresponding representation now plays the role of the Planck constant ¯h, the large values
of the dominant weight corresponding to the classical limit. For a spin system with total
spin j , quasiclassics occurs for largej , whereas in the case ofSU(1, 1) the classical limit
corresponds to large values of the occupation numbers [6]. In this regard, a quasiclassical
quantization by the coherent-state path integral may provide some non-trivial asymptotics
of physical relevance.

LetG be a compact simple Lie group. For any unitary irreducible representationU l(G),
its highest weightl is given by a sum of the fundamental weightsωj with non-negative
integer coefficients

l =
r∑

j=1

ljω
j

wherer stands for the rank of a Lie algebra ofG. It can then be shown that [13]

F l =
r∑

j=1

ljF
j (16)

where{F j } represent the fundamental Kähler potentials†. The same dependence onlj holds
for the covariant symbols (coherent-state expectation values) of the basic elements of the Lie

† For non-compact groups this holds for discrete representations [14].
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algebra ofG [4]. In the following, for the sake of simplicity, we will be solely concerned
with the case when only a single term in the series contributes to (16), which corresponds
to group orbits of rank= 1. Given a group representationU l(G), the number of non-zero
nodeslj 6= 0 in the corresponding Dynkin graph may be called therank of M [4]. If
all lj > 0 the corresponding orbit is called non-degenerate. To put this another way, the
stability algebra (the algebra ofG0), being reductive, splits naturally as a direct sum into its
centre and semisimple ideal, the dimension of the centre being equal to the rank of an orbit.
This is nothing but the number ofwhite roots in the respectivepainted Dynkin diagram
[15], with black roots corresponding to the semisimple part of the stability algebra.

The requirement of rank= 1 by no means restricts one to the groupsG = SU(2)
and SU(1, 1) and corresponding homogeneous spacesSU(2)/U(1) and SU(1, 1)/U(1),
for there exist one-rank degenerate orbits of higher-rank groups with complex dimensions
dimcM > 1. For instance, consider thesu(5) algebra. Painting its Dynkin graph in all
possible ways results in the observation that there exist two rank-oneSU(5) homogeneous
manifolds, namely,M1 = SU(5)/U(1)⊗SU(4) andM2 = SU(5)/U(1)⊗SU(2)⊗SU(3)
with real dimensions equal to 8 and 12, respectively.

In physics the symplectic formw has the same units as an angular momentum

[w] = [kg m2 s−1] = [h̄].

Since we assume the coordinatesz and z̄ to be dimensionless, the formw in equation (3)
is implicitly understood to be measured in units of ¯h. It is convenient to introduce a new
parameter

λ = h̄l
that represents a physical quantity, whereas ¯h represents the quantum mechanical yard stick
with which to measureλ [16]. For instance, in the case(M = S2, l ∈ N) λ represents
the intrinsic angular momentum (spin). It is the parameterλ that enters into measurable
physical quantities, for example energy. In order to keep them fixed in the limitl → ∞,
one should simultaneously imply that ¯h→ 0†. This explains why the large highest weightl
corresponds to a quasiclassical region.

As was already mentioned, the Lie algebra of classical observables may be represented
by covariant symbols or momentum maps which are functions onM, with the Lie product
being the Poisson brackets given by the Kähler structure. In the limitl → ∞ (h̄ → 0)
the algebra of operators (quantal observables) corresponding to the Lie generators ofG

reduces to the Poisson algebra of functions (momentum maps) onM. To put this another
way, in the classical limit, orbits in the co-adjoint representations ofG emerge, where
different representations give rise to different orbits. A method to obtain classical phase
spaces (group orbits) forG = SO(3) has been worked out by Lieb [17] and generalized to
compact simple groups by Simon [18].

Let {Lα} denote a set of generators ofG. Consider the Hamiltonian

H =
dimG∑
α=1

h̄ω(1)α Lα +
dimG∑
α,β=1

h̄ω
(2)
αβ φ

(2)
αβ (l)LαLβ + · · · (17)

whereω(1)α , ω
(2)
αβ , . . . are some frequencies that may explicitly depend on time and functions

φ
(2)
αβ (l), . . . are chosen to ensure thatH cl linearly depends onλ. In view of the

† The limit h̄→ 0 means a passage from systems of units well adjusted for describing quantum objects to those
which are more suitable for classical objects.
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aforementioned property of momentum maps, this automatically holds for the first term†.
From equation (16) it then follows that all dependence onl is isolated in a single factor
of (l) multiplying the total action8, which justifies the application of the stationary phase
approximation to the path-integral propagator (9).

To conclude this section, we make a few remarks about already known quasiclassical
formulae for quantum-mechanical propagators. The main result in this respect is due
to DeWitt and leads to the short-time (and quasiclassical) approximation to a transition
amplitude in a Riemannian configuration space [19], which in the flat case goes over to
the well known van Vleck–Morette formula. Further references can be found in [20], see
also [21].

An inconvenient point is, however, that there is no simple sufficient criteria for this
quasiclassical expression to be exact. Since the configuration space path integral in contrast
to that for the phase space does not involve any Liouville measure (in a time-lattice
discretization), the DH theorem cannot be applied in this case. Yet some ‘experimental’
observation can be made. As has been noted by Schulman [22] and DeWitt [23], the
configuration space path integral is WKB exact if the expression for thefinite time propagator
coincides with that for theshort time one. As was shown by Dowker [24], the finite time
propagator takes on the same form as the short time one for a free point moving in a space
diffeomorphic to the group space of a compact simple group, the explicit formulae being,
however, given only for theSU(N) group. For further development of these ideas the
recent papers by Inomataet al [25] and Junker [26] could be referred to. It is interesting
to note that the first construction of the Green function for the general compact Lie group
was elaborated by Eskin [27].

When using a short time propagator in the iterative procedure for the path integral one
should bear in mind that non-minimal geodesics may exist, indicating that the underlying
topology is non-trivial, for example, for a point onS1. Consequently, different homotopic
sets of classical trajectories must be summed up, otherwise important information about
global geometrical properties of the propagators may be lost. In this regard, correct path-
integral representations for propagators on compact Lie groups and spheres have been
elaborated explicitly by Marinov and Terentyev in a comprehensive paper [20] in agreement
with the Laidlaw–DeWitt–Schulman theorem that establishes a path integral in multiply
connected spaces [28].

The coherent-state, path-integral formalism turns out to be more convenient since
a powerful machinery of canonical transformations can be employed and a hidden
supersymmetry of an action can be revealed, which leads to the path-integral generalization
of the DH theorem that providesuniversalsimple criteria (14) for the quasiclassics to be
exact [12]. Moreover, this method incorporates the underlying symmetry of the problem
under consideration, which makes it possible to look for an asymptotic behaviour with
respect to the representation indices (eigenvalues of the Casimir operators).

It was Klauder [29], as well as Klauder and Daubechies [30], who first suggested the
use of a system of type (13) to derive the semiclassical approximation for the coherent-state
path integral. An attempt at the direct evaluation of the Heisenberg–Weyl, coherent-state
propagator in the quasiclassical domain was made by Weissman [31]. In the important work

† Numerous spin–spin lattice interactions fall into this category. A simple example of the functionφ(2) is
provided by

H ∼ 1

2j − 1
(J 2
+ + J 2

−) H cl ∼ 2j = l φ(2) ∼ 1

2j − 1
j > 1/2

whereJ stands for theSU(2) generators withJ2 = j (j + 1).
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by Yaffe [32] a general method for finding classical limits in certain quantum theories was
developed. This approach is naturally based upon coherent states associated with a symmetry
group and is used to explicitly construct a classical phase space, a corresponding co-adjoint
orbit. None of the symmetry groups considered in this paper are semisimple, which makes it
necessary to distinguish between adjoint and co-adjoint orbits. Cadavid and Nakashima [33]
studied the coherent-state path integral for semisimple Lie algebras, coherent states being
sections of a holomorphic line bundle overG/G0. The semiclassical approximation of
the quantum evolution operator via coherent states associated with quantized closed curves
on theSU(2) orbits was obtained by Karasev and Kozlov [34]. This method was further
extended to semisimple Lie algebras [35] and general Kähler phase spaces [36].

4. Quasiclassical approximation: coherent-state propagator

In this section we present a derivation of the quasiclassical coherent-state propagatorPqc

by applying the stationary-phase approximation to the path integral (9).
We are looking for the representation

P = el(···)[(· · ·)+ o(1)] l→∞ (18)

where (· · ·) stands for l-independent functions on a phase space. The quasiclassical
propagator is then defined by the leading term of (18)

Pqc = el(...)(· · ·). (19)

We first rewrite (9) to explicitly take into account the normalization:

P = 〈zF |zI 〉
∫

Dµ(z)exp8∫
Dµ(z)exp80

80 ≡ 8|H=0. (20)

In order to lift the measure weight factor∂2
z̄zF in an exponential we make use of a trick

that consists of the integration over auxiliary anticommuting fieldsξ̄ (t) andξ(t) (see, e.g.,
[12]):

P = 〈zF |zI 〉
∫

Dz̄DzDξ̄ Dξ exp[8+ ∫ ξ̄ (s)(∂2
z̄zF )ξ(s) ds]∫

Dz̄DzDξ̄ Dξ exp[80+
∫
ξ̄ (s)(∂2

z̄zF )ξ(s) ds]
. (21)

The quasiclassical(l→∞) motion is described by the approximation

9 ≡ 8+
∫
ξ̄ (∂2

z̄zF )ξ ds = 9|c + 1

2
δ29|c + · · · ' 9|c + 1

2
δ29|c δ9|c = 0 (22)

and

90 ≡ 80+
∫
ξ̄ (∂2

z̄zF )ξ ds = 90|c + 1

2
δ290|c δ90|c = 0 (23)

with the boundary conditionsz(0) = zI and z̄(τ ) = z̄F . The subscript ‘c’ denotes a value
along the extremals (13).

To proceed further, we introduce variations

δz ≡ η = z− zc δz̄ ≡ η̄ = z̄− z̄c
which satisfy

η(0) = 0 η̄(τ ) = 0.
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It is clear thatξ̄ |c = ξ |c = 0 and in view of (1) exp80|c = 〈zF |zI 〉. Bearing this in mind
we insert expansions (22) and (23) into equation (21), perform integrals overδξ̄ and δξ
coming fromδ29 andδ290 that cancel each other† and finally arrive at

Pqc(z̄F , zI ; τ) = Predexp8c (24)

where the reduced propagator is given by

Pred=
∫

DηDη̄ exp

{
1

2

∫ τ

0
( ˙̄ηη − η̇η̄) ds − i

2

∫ τ

0
(η2A+ η̄2C + 2η̄ηB) ds

}
=
(

DetK

DetK0

)−1/2

(25)

with

K =
( −iA(s) −iB(s)+ ∂s
−iB(s)− ∂s −iC(s)

)
and K0 =

(
0 ∂s

−∂s 0

)
.

The functions

A = h̄−1∂z[(∂
2
z̄zF )

−1∂zH ]|c C = h̄−1∂z̄[(∂
2
z̄zF )

−1∂z̄H ]|c
B = 1

2h̄
∂z[(∂

2
z̄zF )

−1∂z̄H ]|c + 1

2h̄
∂z̄[(∂

2
z̄zF )

−1∂zH ]|c
are calculated with the aid of the Euler–Lagrange equations (13). We recall thatη and η̄
are considered to be independent.

Our aim now is to express (25) in terms of the classical orbitals. This can be achieved in
a straightforward manner by directly generalizing the derivation of theSU(2) quasiclassical
propagator [37] to the case of an arbitrary one-rank Kähler potential. The result reads

Pqc(z̄F , zI ; τ) = exp

(
8c + i

2

∫ τ

0
B ds

)[
1

[g(z̄c(τ ), zc(τ ))g(z̄c(0), zc(0))]1/2

∂28c

∂z̄F ∂zI

]1/2

.

(26)

The quasiclassical propagator is thus expressed in terms of the total classical action and
classical orbitals and is similar to the DeWitt result for the short time propagator of a
particle in a curved configuration space.

There are some important distinctions, however. First, the total action8 is involved
rather thanS. The boundary term turns out to be of crucial importance in deriving the correct
quasiclassical coherent-state propagator. Were it ignored, the so-called overspecification
problem [29] and contradictions with the DH theorem would appear. This was just the case
in some earlier attempts to derive the quasiclassicalSU(2) propagator [38], whereas the
correct expression has recently been obtained [37].

Next, there appears a dependence on theB-term. The latter plays the role of
normalization and is necessary to fix the quantization (by covariant symbols). This term
interpolates between the covariant and contravariant quantization schemes and disappears
at the point corresponding to the Weyl quantization. With the aid of the Euler–Lagrange
equations it can also be represented in terms of the extremals:

B = i

2
(∂zż− ∂z̄ ˙̄z)|c = i

2h̄
(∂zXz − ∂z̄Xz̄)

whereXH ≡ Xz∂z +Xz̄∂z̄ is the Hamiltonian vector field:iXHw + dH cl = 0.

† The non-trivial measure Dµ contributes toP at higher orders.
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As has already been mentioned, the total action8 and the K̈ahler potentialF are
proportional tol, whereas it is seen thatB ∼ l0, which agrees with suggestion (19).

Generalization of the above result to the multidimensional case (provided one-rank orbits
are still considered!) is straightforward. For instance, consider the compact degenerate
U(N) orbit, with complex projective spaceCPN−1 = SU(N)/SU(N − 1) ⊗ U(1). The
complex dimensionality of the manifold isN−1 whereas its rank= 1. The resulting K̈ahler
potential

F = l log

[
1+

N−1∑
1

z̄izi
]

where {zi, i = 1, . . . , N − 1} is a complex vector and a positive integerl is the highest
weight specifying a representation. An example is provided by a quantum system with
dynamicalU(N) symmetry, for example, generated by a set of bilinearsa

†
i aj , [ai, a

†
j ] =

δij , i, j = 1, . . . , N , with the quasiclassical parameter being the total number of the field
excitations:l =∑i ni .

An obvious modification of equation (26) consists of extending (20) and (21) to include
vector indices and reads

Pqc = exp

(
8c + i

2

∫ τ

0
trB ds

)[
1

[g(z̄c(τ ), zc(τ ))g(z̄c(0), zc(0))]1/2
det

(
∂28c

∂z̄iF ∂z
j

I

)]1/2

(27)

whereg(z̄, z) = det∂2
z̄i zj
F . As for a possible extension of (27) to higher-rank manifolds

(say, maximal orbits with alllj 6= 0), one may note that a corresponding path-integral
representation, being a straightforward generalization of (9), is available, for example, for a
partition function [9] as well as for a transition amplitude [10]. In point of fact, however, the
subsequent application of the stationary-phase approximation necessarily implies that‖l‖
must tend to infinity. Technically, differentlj may run to infinity at different rates, including
the case when all the components except for a single one are kept constant. Consequently,
the straightforward generalization of the above approach to a general case seems to pose a
problem.

We conclude this section by the following remark. It may seem that the final result (26)
is crucially based on the fact of whether a path integral (9) exists as a bonafide integral.
The common belief is, however, that (9) cannot be in general justified as an integral with
respect to a certain measure. Moreover, even the justification of the existence of the limit
in (8) is rather a non-trivial problem [8], although in the semiclassical domain(l → ∞)
this limit under certain restrictions does exist, provided expansion in powers of 1/l is first
carried out [32]. However, this procedure does not in general lead to a genuine integral
with respect toa pathmeasure.

Frequently, the statement occurs (see, e.g., [39]) that once the continuum expression
(9) is concerned, only formal calculations are possible. This in turn implies that the
continuum form of the path integral may at most provide some hint about an actual
answer which nevertheless is to be obtained in a rigorous manner within the time-lattice
approximation. In general, this assertion is true, although some exceptions, for example,
the quasiclassical approximation considered above, are possible. The justification of the
continuum representation in the quasiclassical domain(l � 1) may be given in two formally
distinct but in essence similar ways. One may observe, for instance, that a scalar product
〈zk|zk−1〉 entering into equation (8) is highly peaked about1k(ε) ≡ zk−zk−1 ∼ 0 asl tends
to infinity. This implies that, once the leading termPqc is concerned, only terms linear in
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1k are to be left in (8), which under some additional mild restrictions on the Hamiltonian
function would eventually lead to the continuum representation (25), corrections to the
leading term coming, in particular, from higher powers of1k [32].

We prefer, however, to start from the formal continuum representation (9) which makes
sense for continuous differentiable paths. Path integral (9) is localized on a Hilbert space of
the square integrable paths,(z, z) <∞ [8], so that in general (and actually, almost surely)
z(s) has no time derivative. To find a way out, we represent an arbitrary path in the form
z = zcl(s)+ δz(s) and expandδz(s) in a series over an appropriate basis in [0, τ ]. The trick
due to Berezin consists of retaining only a finite part of the series, thereby dealing with
continuous and differentiable paths at all intermediate steps, with the infinite limit being
taken only at the final stage. This procedure converges for the Gaussian path integral (25)
[8], thereby justifying the above continuous calculus. This is, however, the case, provided
we are concerned as before with a calculation of the leading term,Pqc.

5. Other quantization schemes

So far we have been concerned with a specific quantization scheme, the quantization
by covariant symbols. The next important quantization scheme to be mentioned here is
contravariant quantization. The covariant symbolH cov which we identify withH cl is
related to the contravariant oneH ctr by [2]

H cov(z̄, z) =
∫

exp{φ(z̄, z|v̄, v)}H ctr(v̄, v)dµ(v̄, v) ≡ (T̂ H ctr)(z̄, z) (28)

where

φ(z̄, z|v̄, v) = F(v̄, v)+ F(z̄, v)− F(z̄, z)− F(v̄, v). (29)

Note that from the resolution of unity (6) it follows that∫
e−F(v̄,v) dµ(v̄, v) = 1. (30)

If the point (z̄, z) is fixed, the potentials−φ(z̄, z|v̄, v) andF(v̄, v) generate the very same
metric and are to be related by a group transformationgz:

F(gzv, gzv) = −φ(z̄, z|v̄, v). (31)

Invariance of the measure dµ upongz along with the normalization (30) results in

1cov = 1ctr

as it should be.
In principle, the operator̂T , being permutable with a group action, can be expressed

via the corresponding Casimir operators. In the case under consideration only the second
Casimir operator

K2 ≡ 1 = (∂2
zz̄F )

−1∂2
zz̄ (32)

the Laplace–Beltrami operator with respect to the metric (4), is involved.
As is known, in the flat case

T̂ (1) = e1 (33)

whereas for the quantization on a sphere and Lobachevsky planeT̂ (1) has been evaluated
in a form of infinite products [3].

As is seen from equation (26), both the expression in the brackets and theB-term
are of the order ofO(1), whereas8c = O(l). This means thatH ctr is to be taken with
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accuracy up to the order ofO(1). Therefore, for our purposes we need an asymptotic
relation between symbols rather than the exact one, which is not easily available. As a
consequence one may note the following. Being non-positive, the functionφ reaches zero
at the point(v̄, v) = (z̄, z). As l goes to infinity, the maximum becomes sharper, localizing
φ at (v̄, v) = (z̄, z). Then expanding the integrand in (28) in powers ofη = v − z and
η̄ = v̄ − z̄, one gets

H cov(z̄, z) =
∫

e−η̄η[H ctr(z̄, z)+1H ctr(z̄, z)η̄η]
dη̄ dη

2π i
+ o(1)

= [1+1+O(1/l2)]H ctr(z̄, z) l→∞. (34)

In view of this, one may convert equation (26) into a form suitable for the quantization by
contravariant symbols.

To conclude this section, we will specify equation (26) for the flat(M = C) case
relevant for the Heisenberg–Weyl coherent states. To avoid confusion with dimensions, we
introduce, following [16], coordinatesx = q/α andy = p/β and the complex dimensionless
coordinatez = 1/

√
2(x + iy). Constantsα and β are of dimensions of position and

momentum, respectively. It is convenient to introduce the dimensionless constant

γ = αβ/h̄
which plays the role of the representation indexl†. The classical limit becomes quite
transparent in this notation. It means a passage from systems of units to measureα andβ,
which are quite adequate for a quantum description, to those that are more convenient for
the classical one. For instance, if one chooses a ‘classical scale’α = 1 m,β = 1 kg m s−1,
thenγ−1 ≈ 10−34, which effectively corresponds to small ¯h. It is just in this sense that one
should understand the limit ¯h→ 0.

The conventional 2-formw = dp ∧ dq goes over to

w = −αβ dx ∧ dy

so that

w/h̄ = iγ dz̄ ∧ dz.

We introduce a set ofγ -dependent Heisenberg–Weyl coherent states:

|z; γ 〉 = exp

(
− γ

2
z̄z+√γ za†

)
|0〉 (35)

hence

F = log |〈0|z; γ 〉|−2 = γ z̄z. (36)

In the flat case covariant symbols are related to those in the ‘α-quantization’ scheme by

H cov(z̄, z) = (T̂α(1)H(α))(z̄, z) T̂α(1) = eα1 α ∈ [0, 1]

the covariant, contravariant and Weyl quantization schemes being specified byα = 0, 1 and
1/2, respectively. As a result one gets

H cov− 1
21H

cov ≡ H cov− [( 1
2 − α)+ α]1H cov = H(α) − ( 1

2 − α)1H cov+O(1/l2)
† In fact, γ 6= 0 can be thought of as a number that specifies co-adjoint orbits of the Heisenberg–Weyl group
which are two-dimensional planes.
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which yields

P (qc)
flat =

[
1

γ

∂28c

∂z̄F ∂zI

]1/2

exp

{
8c + i

2

∫ τ

0
B ds

}
=
[

1

γ

∂28c

∂z̄F ∂zI

]1/2

exp

{
8(α)
c + i

(
1

2
− α

)∫ τ

0
B ds

}
(37)

∼
[

1

γ

∂28(α)
c

∂z̄F ∂zI

]1/2

exp

{
8(α)
c + i

(
1

2
− α

)∫ τ

0
B(α) ds

}
(38)

where equivalence classes are defined byf ∼ g = {f |f/g = 1+ o(1), l → ∞}, so that
H(α) ∼ H cov ≡ H cl. All quantities in the above that carry theα index (e.g.,B(α)) are to be
calculated by the substitutionH → H(α).

This result (the first line in equation (37)), with theB-term, however, being missed, was
derived by Weissman [40] by extending Miller’s semiclassical algebra to the coherent-state
setting†. Originally, Miller’s formalism incorporated eigenstates of Hermitian operators to
relate a quantum mechanical matrix element of a general unitary transformation, in the
semiclassical limit, to a generator of a corresponding canonical transformation [41].

It is to be noted that in deriving equations (37) and (38) the original equations of motion
(13) that correspond to the covariant quantization have been kept fixed. That is why (38)
cannot be regarded as a genuineα-representation. To derive the latter, one would have to
start with equationδ8(α 6=0) = 0, whose solutions in contrast to (13) would bear an explicit
l-dependence, namely,z(α) = zcl + O(1/l). In that case, however, it would be natural to
start with, instead of equation (7), theα-symbol of the evolution operator.

6. Test examples

In this section, the continuum representation (9) in the semiclassical approximation (26)
is shown to directly recover, in contrast to some earlier attempts (see, e.g., [29, 38]), the
known exact results, which seems to be a necessary requirement to be met. It is the fact that
earlier approaches had certain inconsistencies and failed to recover the exact answers which
resulted eventually in the conclusion that the coherent-state path integral does not yield
the correct semiclassical results due to intrinsic inevitable ambiguities [42] and, hence, the
WKB approximation is not allowed in the case of a matrix element under the coherent-state
representation [43]. As we will see shortly, the above statements seem to be somewhat hasty.

6.1. Path integral for the Heisenberg–Weyl coherent states

In view of equation (36), the general representation (9) reduces to [8, 44]

Pγ = 〈zF , γ | exp−i
∫ τ

0
H ds|zI , γ 〉

=
∫ z̄(τ )=z̄F

z(0)=zI
DzDz̄ exp

{
γ

2

∫ τ

0
(z ˙̄z− z̄ż) ds − i

∫ τ

0
H cl(z̄, z)ds

+γ
2

[z̄F z(τ )+ z̄(0)zI − |zF |2− |zI |2]

}
(39)

with the normalizationPγ (z̄F , zI ; τ)|H=0 = 〈zF , γ |zI , γ 〉.
† In a subsequent paper [31] the author, to recover the correct result, was forced to take into account theB-term
in a specific case of the parametric amplifier.
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For a harmonic oscillator (¯h = 1) H = ωa†a, one obtainsH cl = H(α=0) = γω|z|2 and
H(α) = H cl − αω, and solutions to (13) read

zc(s) = zI exp(−iωs) z̄c(s) = z̄F exp(−iω(τ − s)) (40)

which in turn results in

8(α)
c = γ z̄F zI exp(−iωτ)− γ

2
(|zF |2+ |zI |2)+ iταω B = ω.

Equation (37) can be applied to yield

Pγ = exp8(α=0)
c

as it should be.
It also follows from the resolution of unity in terms of (35), that

tr e−iHτ = γ
∫

dz̄ dz

2π i
P(z̄, z) = γ

∫ ∞
0

dx exp[−γ x(1− e−iωτ )] = eiτω/2

2i sin(τω/2)

which is a correct answer (cf [43]).
For Gaussian actions the path integral (39) reduces to equation (37). However, in the

case when the Hamiltonian cannot be cast into a linear combination of the oscillator group
generatorsa†a, a† anda, the quasiclassical propagator (37) does not merely reduce to the
simple form

exp8c.

For instance, for the Hamiltonian of a parametric amplifier

H = ωa†a − g
2

[a†
2

e−2iωt + a2 e2iωt ]

one gets (γ = 1)

zc(s) exp(iωs) = iz̄F − zI sinhgτ

coshgτ
sinhgs + zI coshgs

z̄c(s) exp(iω(τ − s)) = z̄F + izI sinhgτ

coshgτ
coshgs − izI sinhgs

8c = z̄F zI e−iωτ

coshgτ
+ i

2
tanhgτ(z̄2

F + z2
I )−

1

2
(|zF |2+ |zI |2) B = ω.

Equation (37) is again exact and reads

P(z̄F , zI ; τ) = (coshgτ)−1/2 exp8c

which coincides with the direct time-lattice calculations [45].

6.2. SU(2) path integral

The coherent state for the unitary irreducible representation of theSU(2) group is given by

|z; j〉 = (1+ |z|2)−j exp(zJ+)|j ;−j〉 (41)

wherez ∈ SU(2)/S(U1 × U1) ' CP 1, which can be thought of as an extended complex
planeM = CP 1 = C̄1. The operatorsJ± andJ0 span theSU(2) algebra

[J0, J±] = ±J± [J+, J−] = 2J0

and the lowest weight state|j ;−j〉 is annihilated byJ−. From equation (2) it follows that

F(z̄, z) = 2j log(1+ z̄z) l = 2j ∈ N
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wherej must be a half-integer corresponding to the unitary irreducible representations of
SU(2). From the geometric viewpoint, this requirement is to be imposed in order that a
holomorphic prequantum line bundle overCP 1 can be constructed. The general equation (9)
reads (h̄ = 1)

Pj (z̄F , zI ; τ) =
∫ z̄(τ )=z̄F

z(0)=zI
Dµ(z)

(1+ z̄F z(τ ))j (1+ z̄(0)zI )j
(1+ |zF |2)j (1+ |zI |2)j

× exp

(
j

∫ τ

0

˙̄z(s)z(s)− z̄(s)ż(s)
1+ z̄(s)z(s) ds − i

∫ τ

0
H cl(z̄(s), z(s))ds

)
(42)

with the normalizationPj |H=0 = 〈zF ; j |zI ; j〉. Here Dµj(z) stands for the infinite pointwise
product of theSU(2) invariant measures

dµj = 2j + 1

2π i

dz dz̄

(1+ |z|2)2 .
As a simple example that directly demonstrates the usefulness of equation (26) consider

a system governed by the Hamiltonian [37]

H = 2A(t)Jz + f (t)J+ + f̄ (t)J−.
The stationary-phase equations read

iż = 2A(t)z+ f (t)− f̄ (t)z2 z(0) = zI (43)

−i ˙̄z = 2A(t)z̄+ f̄ (t)− f (t)z̄2 z̄(τ ) = z̄F . (44)

Being of Riccati type, these equations cannot be solved explicitly, but yet some information
is available. Solutions to equations (43) and (44) represent theSU(2) phase flows starting
from the endpointszI andz̄F . This enables one to determine explicitly their dependence on
the initial data, which in turn furnishes the necessary information for (26) to be applied [37]:

8c = 2j log[ā(τ )− b̄(τ )zI + b(τ)z̄F + a(τ)z̄F zI ] − j log(1+ |zF |2)(1+ |zI |2)

B = (2A− f z̄− f̄ z)|c = −i
d

dt
log
−b̄(t)zI + ā(t)
−c(t)z̄F + d(t)

∂28c

∂z̄F ∂zI
= 2j

[ā(τ )− b̄(τ )zI + b(τ)z̄F + a(τ)z̄F zI ]2

where

ȧ = −iAa + if b̄ a(0) = 1

ḃ = −iAb − if ā b(0) = 0. (45)

Inserting this into (26) yields

Pj (z̄F , zI ; τ) = exp8c (46)

which coincides with direct time-lattice calculations (cf [38]). This result agrees with the
DH theorem. Moreover, the dynamical invariance, i.e. the fact thatH belongs to theSU(2)
algebra, results in

Pred= 1

which is of importance in deriving the generalized Bohr–Sommerfeld quantization
conditions [37].

With equation (46) at hand, the partition function

Zj =
∫

dµj Pj (z̄, z; τ)
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can be easily computed to yield

Zj=1/2 = ā(τ )+ a(τ) Zj=1 = ā(τ )2+ a(τ)2+ |a(τ)|2− |b(τ)|2.
Solutions to equations (45) (all parameters being time-independent) read

a(t) = cos�0t − i cos(2|f |u) sin�0t b(t) = − if

|f | sin(2|f |u) sin�0t

where

�0 =
√
A2+ |f |2 cos(2|f |u) = A

�0
.

In particular,

Zj=1/2 = 2 cos�0τ Zj=1 = 1+ 2 cos(2�0τ)

which is a correct result. In a similar fashion the discrete series representations ofSU(1, 1)
may be considered, with the Kähler potential now beingF = 2k log(1− |z|2), |z| < 1,
16 2k ∈ N .

As a simple though non-elementary example, we finally consider an asymptotic
behaviour of the matrix element

P ≡ 〈z| exp

(
λ

2j
J 2
z

)
|z〉 λ > 0, 2j � 1. (47)

From equation (41) and theSU(2) commutation relations it follows that

P = (1+ |z|2)−2j
2j∑
n=0

C2j
n |z|2n exp

(
λ

2j
(n− j)2

)

= (1+ |z|2)−2j eλj/2
∫ ∞
−∞

dt√
π

e−t
2

2j∑
n=0

C2j
n |z|2n exp

(
− λn−

√
2λ

j
tn

)

= (1+ |z|2)−2j eλj/2
∫ ∞
−∞

dt√
π

e−t
2

(
1+ |z|2 exp

(
− λ−

√
2λ

j
t

))2j

≡ (1+ |z|2)−2j eλj/2
√

2j

π

∫ ∞
−∞

dt exp(−2jf (t)) (48)

where

f (t) = t2− log(1+ |z|2 exp(−λ− 2
√
λt)).

The saddle-point expansion can be further applied to equation (48) to yield

P = exp

[
− 1

2
λjk2

0 + λjk0+ 2j log

(
1+ |z|2 e−λk0

1+ |z|2
)](

1

(1+ (λ/2)(k2
0 − 1))1/2

+ o(1)
)

2j →∞ (49)

with k0 being the saddle point

k0 = 1− |z|2 e−λk0

1+ |z|2 e−λk0
. (50)

On the other hand, to apply in this case the basic equation (26), we write down forP
the SU(2) path-integral representation (42) with

H cl = ω
[
j

2

(
1− |z|2
1+ |z|2

)2

+ |z|2
(1+ |z|2)2

]
− iτω = λ (51)
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and z̄F ≡ z̄, zI ≡ z. The equations of motion then read

ż = iωz
1− |z|2
1+ |z|2 (1− 1/(2j)) z(0) = z

˙̄z = −iωz̄
1− |z|2
1+ |z|2 (1− 1/(2j)) z̄(τ ) = z̄. (52)

It can be easily checked that|z|2 appears as a constant of motion, which enables one to
integrate (52):

z(t) = z ei�t z̄(t) = z̄ ei�(τ−t) (53)

where� is to be determined by the relation

�

ω
≡ k = 1− |z|2 e−λk

1+ |z|2 e−λk

(
1− 1

2j

)
. (54)

Expanding further both sides of equation (54) in the inverse powers of 2j yields

k = k0+ k1/(2j)+ · · ·
where

k0 = 1− |z|2 e−λk0

1+ |z|2 e−λk0
(55)

which coincides with equation (50) and

k1 =
(
λ

2
(1− k2

0)− 1

)
k−1

0 . (56)

Now that we have explicitly determined classical solutions, the basic ingredients entering
into (26) can easily be obtained. In the first place, with the help of equations (53), (55) and
(56) one gets

8c = −λ
2
jk2

0 + λjk0+ 2j log

(
1+ |z|2 e−λk0

1+ |z|2
)
+ λ(1− k

2
0)

4
+O(1/j)

i

2

∫ τ

0
B dt = λk0

2
− λ(1− k

2
0)

4
+O(1/j). (57)

A few laborious calculations can be carried out to obtain
∂28c

∂z̄F ∂zI

∣∣∣∣
z̄F=z̄,zI=z

.

The point is that when calculating∂k0/∂z̄ ≡ Kz̄, ∂k0/∂z ≡ Kz and ∂2k0/∂z̄∂z ≡ Kz̄z one
has to bear in mind thatk0 implicitly depends on the endpoints through equation (55). After
some algebra one, however, finds that

Kz = − 2z̄ e−λk0

1+ |z|2 e−λk0
Kz̄ = − 2z e−λk0

1+ |z|2 e−λk0

Kz̄z = − 2k0

(1− a)3
e−λk0

(1+ |z|2 e−λk0)2
a ≡ λ

2
(1− k2

0).

The first line of equation (57) along with the derivatives obtained lead to

∂28c

∂z̄F ∂zI

∣∣∣∣
z̄F=z̄,zI=z

=−λjKz̄z(k0− 1)− λjKzKz̄ − 2j

(1+ k0)2
[Kz̄z(1+ k0)−KzKz̄] +O(1)

= 2j e−λk0

(1− a)2(1+ |z|2e−λk0)2

[(
1

(1+ k0)2
− 1

2

)
(1− k2

0)
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−
(
λ(1− k0)

2
− 1

1+ k0

)
2k0

1− a
]
+O(1)

= 2j e−λk0

(1− a)(1+ |z|2 e−λk0)2
+O(1). (58)

Inserting equations (57) and (58) into equation (26) immediately results in (49).

7. Conclusion

In the present paper, we have discussed quasiclassical quantization of classical mechanics on
a symplectic group orbit of rank= 1 in terms of the relevant coherent-state path integral,
which provides an appropriate expansion of a quantum-mechanical propagator for large
values of the highest weightl that specifies the underlying group representation. The
principal result is a new explicit quasiclassical formula for a propagator on a coherent-state
manifold, which is written entirely in terms of classical data and reveals the leading largel

behaviour of the propagator. This representation is important since a wealth of physically
relevant classical phase spaces admit a natural Kähler polarization, for exampleS2 ' CP 1,
the classical phase space for a spin, orS1,1 ' D1, a unit disk on a complex plane—a
natural phase space for models of quantum optics [25]. In this regard, the quasiclassical
representation (26) can be applied to the study of, for example, spin tunnelling in the
semiclassical limit [46] and related problems [47] as well as to the behaviour of highly
excited field states in quantum optical models.

As for possible generalizations of (26), it would be of practical importance to modify
it to include non-local actions that arise provided certain degrees of freedom in an original
Hamiltonian can be integrated out. This is the case for a large class of interactions that
involve bilinear combinations of Lie algebra generators and field coordinates. An example
is provided by the spin-radiation/atom-radiation interaction:

H = ωJz + ωa†a + g√
2j
(J+a + J−a†) [a, a†] = 1

where we have for the sake of notational simplicity put equal the frequencies of the field
and spin oscillations. Consider

P ≡ 〈z|tra,a† e−iτH |z〉 P|H=0 = 1.

Having integrated out the field degrees of freedom, one is left with an effective action whose
non-local part looks like

2jg2
∫ τ

0

z̄(t)G(t − s)z(s)
(1+ |z(t)|2)(1+ |z(s)|2) dt ds G(t − s) =

∞∑
n=−∞

eiωn(t−s)

iωn − iω
ωn = 2π

τ
n.

Equation (26) cannot be directly applied in this case unless a few simplifications are
carried out. For instance, in the local limit that holds, roughly speaking, asω → ∞ one
has

G(t − s)→ i

ω
δ(t − s)

so that one arrives at theSU(2) path-integral representation (42) with

H cl = −jω1− |z|2
1+ |z|2 − 2j (g2/ω)

|z|2
(1+ |z|2)2 .

The equations of motion then read

ż = −i�z z(0) = z ˙̄z = i�z̄ z̄(τ ) = z̄
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where

�

ω
≡ k = 1− α2 1− |z|2 e−λk

1+ |z|2 e−λk
α2 = (g/ω)2 λ = iωτ.

The solution to the above equations is quite transparent

k = 1− α2 1− |z|2 e−λ

1+ |z|2 e−λ
+O(α4) α2→ 0.

Proceeding further as above one, finally obtains

P = exp8c(1+ o(1)) 2j � 1, α2� 1, 2jα2 fixed

where

8c = jλ+ 2j log
1+ |z|2 e−λ

1+ |z|2 + λ2jα2|z|2 e−λ

(1+ |z|2 e−λ)2
.

It would also be interesting to extend this approach to the supersetting, since even the
simplest super phase spaces happen to be relevant to important physics. For instance, the
one-rank degenerate orbit of theSU(2|1) supergroup can be viewed as a phase space of
the t − J model of strongly correlated electrons which is believed to adequately describe a
high-Tc superconducting state.
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